
Package: SpatialfdaR (via r-universe)
September 6, 2024

Type Package

Date 2022-12-24

Version 1.0.0

Title Spatial Functional Data Analysis

Author James Ramsay [aut, cre], Spencer Graves [ctb]

Maintainer James Ramsay <james.ramsay@mcgill.ca>

Depends R (>= 3.5.0), fda, splines, graphics, rgl, geometry

Description Finite element modeling (FEM) uses meshes of triangles to
define surfaces. A surface within a triangle may be either
linear or quadratic. In the order one case each node in the
mesh is associated with a basis function and the basis is
called the order one finite element basis. In the order two
case each edge mid-point is also associated with a basis
function. Functions are provided for smoothing, density
function estimation point evaluation and plotting results. Two
papers illustrating the finite element data analysis are
Sangalli, L.M., Ramsay, J.O., Ramsay, T.O.
(2013)<http://www.mox.polimi.it/~sangalli> and Bernardi, M.S,
Carey, M., Ramsay, J. O., Sangalli, L.
(2018)<http://www.mox.polimi.it/~sangalli>. Modelling spatial
anisotropy via regression with partial differential
regularization Journal of Multivariate Analysis, 167, 15-30.

License GPL (>= 2)

URL http://www.functionaldata.org

LazyData true

Imports knitr, rmarkdown

VignetteBuilder knitr

BuildVignettes yes

Language en-US

Suggests spelling

Repository https://jamesramsay5.r-universe.dev

1

http://www.mox.polimi.it/~sangalli
http://www.mox.polimi.it/~sangalli
http://www.functionaldata.org

2 create.FEM.basis

RemoteUrl https://github.com/jamesramsay5/spatialfdar

RemoteRef HEAD

RemoteSha fa63905bac25bca0a11a73a5c6073ec3d0864d3c

Contents
create.FEM.basis . 2
eval.FEM.basis . 6
eval.FEM.fd . 7
FEMdensity . 8
insideIndex . 11
makenodes . 12
mass.FEM . 13
MeuseData . 14
plotFEM.fd . 15
plotFEM.mesh . 16
randomFEMpts . 17
smooth.FEM.basis . 19
smooth.FEM.density . 22
squareMesh . 26
squareMesh_RL . 27
stiff.FEM . 28
tricoefCal . 29
triDensity . 30
triquad . 31

Index 33

create.FEM.basis Create a FEM Basis with Triangular Finite Element Basis Functions

Description

Functional data objects are constructed by specifying a set of basis functions and a set of coefficients
defining a linear combination of these basis functions.

The FEM basis is used for functions defined over spatial regions with complicated boundaries.
There is an outer boundary outside of which no spatial location is found and there may be, in
addition, one or more interior boundaries defining holes inside of which no data are found as well.
For example, the outer boundary may define a geographical region, and an inner boundary can
define a lake within which no data of interest are found.

The interior of the region not within the holes is subdivided into a set of triangles by a mesh gener-
ation procedure. See function create.mesh.object for a description of this process.

FEM basis functions are centered on points called nodes that are on a boundary or within the interior
region not within holes at points called nodes. Some or all of these nodes are also vertices of
the triangles. FEM basis functions are the two-dimensional analogues of B-spline basis functions

create.FEM.basis 3

defined over one dimension. Like splines, each FEM basis function is zero everywhere except in
the immediate neighborhood defined by the triangles that share a node, and the nodes play the role
of knots for splines.

Like splines, FEM functions are piecewise bivariate polynomials, with a loss of smoothness across
edges of triangles. Linear FEM functions are once-differentiable within triangles, and quadratic
functions are twice-differentiable. But both types of function are only continuous across edges.
The second example below will highlight these features.

Function create.FEM.basis supports only linear or quadratic functions. All nodes for linear basis
functions correspond to triangle vertices, and consequently there are three nodes per triangle. For
quadratic basis functions, vertices are nodes, but mid-points of edges are also nodes, so that there
are six nodes per triangle.

Usage

create.FEM.basis(pts, edg=NULL, tri, order=1, nquad=0)

Arguments

pts The nbasis by 2 matrix of vertices of triangles containing the X- and Y-coordinates
of the vertices.

edg The number of edges by 2 matrix defining the segments of the boundary of
the region which are also edges of the triangles adjacent to the boundary. The
values in matrix edg are the indices of the vertices in matrix pts of the starting
and ending points of the edges.

tri The no. of triangles by 3 matrix specifying triangles and their properties. The
indices in pts of the vertices of each triangle are in counter-clockwise order.

order The order of the finite element basis functions. This may be either one or two.
Order one functions are piecewise linear, and order two functions are piecewise
quadratic.

nquad An integer determining the number of quadrature points and weights used to
estimate the value of an integral if a function over a triangle using Gaussian
quadrature. The number of quadrature points and weights is equal to the square
of nquad. The nquad <- 4 usually provides sufficient accuracy for statistical
purposes, but the default value of zero implies that no such integration will be
needed. Data smoothing does not require integration, but data density estimation
does.

Details

The mesh generation step is critical, and if done carelessly or naively, can easily cause the smoothing
process to fail, usually due to a singular set of coefficient equations. Careful attention to generating
a mesh is required in order to obtain a mesh that is both well-conditioned and has sufficient density
to permit a faithful rendition of the smoothing surface required by the data.

Well-conditioned meshes do not have triangles with small angles, and the two mesh-generations
functions can allow the user to specify the minimal angle in the mesh.

4 create.FEM.basis

On the other hand, the finer the mesh, the greater the number of basis functions, so that, as in all
smoothing procedures, one wants to avoid meshes so fine that the possibly noisy observations are
interpolated rather than smoothed.

Triangles with no data in them are in general to be avoided. In fact, it is common but not necessary
that the mesh be constructed so that data observation points are at the vertices of the triangles in the
mesh. This special case also leads to very fast computation of the smoothing surface. In some cases,
it may make sense to interpolate data to prespecified mesh points before undertaking smoothing.

Piecewise linear basis functions are generally preferable unless estimates of the second partial
derivatives of the surface are required because quadratic elements require twice as many basis func-
tions. First order partial derivatives of surfaces are piecewise constant over each triangle. Even
though the estimated surface is piecewise linear, its total curvature is still controlled by the size
of the smoothing parameter specified in function smooth.FEM.basis. The larger the smoothing
parameter, the more flat the surface will become.

Value

A basisfd object of the type FEM. See the help file for basisfd for further details about this class.

The params slot or member for an FEM basis contains a good deal of information that is used in
other functions, such as smooth.FEM.basis. Consequently, basisfd$params is itself a list with
named members, their contents are:

mesh an object of class MESH specifying the structure of the triangular mesh. See the
help file for this class for further details

order either 1 for linear elements or 2 for quadratic elements
nodeList a list object with named members. The list contains information that is re-

quired for other functions that may be repeatedly called, such as smooth.FEM.basis.
The names and their contents are:

1. nodesa K by 2 matrix of coordinates for the K nodes in the mesh.
2. nodesindexthe index of each node
3. Jthe Jacobian for the transformation of each triangle to the standard right

triangle
4. metrica three-dimensional array with the length of the leading dimension

equal to the number of triangles, and the next two dimensions of length
2. The 2 by 2 matrices are the transformation matrices for mapping each
triangle into the standard triangle

5. quadmatNULL if argument nquad is zero, or otherwise, a list with a mem-
ber for each triangle containing the quadrature points and weights for ap-
proximating the integral of a function over that triangle. See the help file
for function triquad for further details.

6. Cart2BaryA three-dimensional array with the leading dimension equal to
the number of triangles, and the remaining dimensions of length 3. Each
order 3 matrix maps the cartesian coordinate vector
c(1, p(1), p(2)) into the corresponding barycentric coordinates for a tri-
angle, where p contains the Cartesian coordinates of a point.

Author(s)

Jim Ramsay

create.FEM.basis 5

References

Sangalli, Laura M., Ramsay, James O., Ramsay, Timothy O. (2013), Spatial spline regression mod-
els, Journal of the Royal Statistical Society, Series B, 75, 681-703.

See Also

plotFEM.mesh, smooth.FEM.basis

Examples

--
Example 1: Set up the simplest possible mesh by hand so as to see
the essential elements of a finite element basis
Specify the three vertices, in counter-clockwise order, for a single
right triangle
--
pts <- matrix(c(0, 0, 1, 0, 0, 1),3,2,byrow=TRUE)
These points also specify the boundary edges by a 3 by 2 matrix
with each row containing the index of the starting point and of the
corresponding ending point
edg <- matrix(c(1, 2, 2, 3, 3, 1), 3, 2, byrow=TRUE)
The triangles are defined by a 1 by 3 matrix specifying the indices
of the vertices in counter-clockwise order
tri <- matrix(c(1, 2, 3), 1, 3)
FEM basis objects can be either linear (order 1) or quadratice (order 2)
both are illustrated here:
Set up a FEM basis object of order 1 (piecewise linear) basis functions
order <- 1
FEMbasis1 <- create.FEM.basis(pts, edg, tri, order)
display the number of basis functions
print(paste("Number of basis functions =",FEMbasis1$nbasis))
plot the basis, the boundary being plotted in red
plotFEM.mesh(pts,tri)
Set up an FEM basis object of order 2 (piecewise quadratic) basis functions
order <- 2
FEMbasis2 <- create.FEM.basis(pts, edg, tri, order)
display the number of basis functions
print(paste("Number of basis functions =",FEMbasis2$nbasis))
plot the basis, the boundary being plotted in red
plotFEM.mesh(pts,tri)
--
Example 2: Set up an FEM object with a hexagonal boundary, and a single
interior point
--
angle <- seq(0,2*pi,len=7)
x <- cos(angle); y <- sin(angle)
pts <- rbind(cbind(x[1:6], y[1:6]), c(0, 0))
edg <- cbind((1:6),c((2:6), 1))
tri <- matrix(c(7*rep(1,6), 1:6, 2:6, 1),6,3)
hexFEMbasis <- create.FEM.basis(pts, edg, tri)
display the number of basis functions
print(paste("Number of basis functions =",hexFEMbasis$nbasis))

6 eval.FEM.basis

plot the basis, the boundary being plotted in red
plotFEM.mesh(pts,tri)

eval.FEM.basis Values of a Finite Element Functional Data Object

Description

Evaluate a finite element (FEM) functional data object at specified locations, or evaluate a pair of
partial derivatives of the functional object.

Usage

eval.FEM.basis(obspts, FEMbasis, nderivs=rep(0,2))

Arguments

obspts a two-column matrix of x- and Y-coordinate values at which the functional data
object is to be evaluated.

FEMbasis an FEM functional basis object to be evaluated.

nderivs a vector length 2 containing a pair of orders of derivatives. If the FEM basis is
piecewise linear (of order 1), the only admissible pairs are (0,0), (0,1) and (1,0).
If the FEM basis is piecewise quadratic (of order 2), the pairs (1,1), (0,2) and
(2,0) are also admissible.

Details

Two common uses of this function are (1) to evaluate the surface at one or more significant points,
and (2) evaluate the surface over a bounding rectangle so that the surface can be plotted as either
a contour plot are as a persp type plot. Points that are outside of polygon defining the surface are
given the value NA, and are therefore not plotted.

Value

an array of 2 or 3 dimensions containing the surface values. The first two dimension correspond to
the arguments obspts and, if present, the third dimension corresponds to the surface in the situation
where the coefficient matrix has multiple columns.

See Also

eval.FEM.fd, smooth.FEM.basis

eval.FEM.fd 7

eval.FEM.fd Evaluate a functional data object with an FEM basis.

Description

A set of points is supplied, and the height of the surface is evaluated at these points.‘

Usage

eval.FEM.fd(pts, fdobj, nderivs=rep(0,2))

Arguments

pts A two column matrix of pts within a triangular mesh.

fdobj A functional data object with an FEM basis.

“1

nderivs A vector of length 2 containing derivative orders with respect to the X and Y
coordinates of the triangular mesh. The derivative orders are restricted to 0, 1
or 2, and 2 can only be used for a quadratic basis system. The default is both
orders being 0.

Value

A matrix with number of rows equal to the number of rows of pts containing the values of of one
or more surfaces at these points.

Author(s)

Jim Ramsay

References

Sangalli, Laura M., Ramsay, James O., Ramsay, Timothy O. (2013), Spatial spline regression mod-
els, Journal of the Royal Statistical Society, Series B, 75, 681-703.

See Also

eval.FEM.basis

Examples

--
Example 1: smoothing data over a circular region
--
Set up a FEM object with a approximatedly circular boundary with 12 sides,
and two rings of 12 points plus a point at the centre.
angle = seq(0,11*pi/6,len=12)

8 FEMdensity

define the 24 point locations
rad = 2
ctr = c(0,0)
pts = matrix(0,25,2);
pts[1:12,1] = rad*cos(angle) + ctr[1]
pts[1:12,2] = rad*sin(angle) + ctr[2]
pts[13:24,1] = rad*cos(angle)/2 + ctr[1]
pts[13:24,2] = rad*sin(angle)/2 + ctr[2]
define the edge indices
edg <- matrix(0,12,2)
for (i in 1:11) {

edg[i,1] <- i
edg[i,2] <- i+1

}
edg[12,] <- c(12,1)
use delaunay triangulation to define the triangles
tri = delaunayn(pts)
plotFEM.mesh(pts, tri, shift = 0.02)
title("A 25-point curcular mesh")
Create an order 1 basis
hexFEMbasis <- create.FEM.basis(pts, edg, tri, 1)
locations of data
obspts <- pts
npts <- dim(obspts)[1]
points(obspts[,1], obspts[,2], col=2, cex=2, lwd=2)
hexfd = fd(matrix(1-c(obspts[,1]^2+obspts[,2]^2),npts,1),hexFEMbasis)
heights of a hemisphere at these locations
hexhgts <- round(eval.FEM.fd(obspts,hexfd),2)

FEMdensity Evaluate the function value and gradient for a penalized likelihood
estimate of spatial density.

Description

A spatial density defined over a region with complicated a boundary that is defined by a triangulation
is estimated. The basis functions are linear finite elements (FEM) defined at each vertex. The data
are the spatial coordinates of a sample of a defined spatial event. The density surface is the logarithm
of the density, and the smoothness of the log surface is controlled by a smoothing parameter lambda
multiplying the stiffness matrix.

Usage

FEMdensity(cvec, obspts, FEMbasis, K1=NULL, lambda=0)

Arguments

cvec A matrix each column of which contains the coefficients for an FEM basis func-
tion expansion of a surface. The number of coefficients equals the number of
vertices in the triangulation, also called the nodes of the FEM expansion.

FEMdensity 9

obspts A two-column matrix containing the locations at which the logarithm of the
density is to be evaluated.

FEMbasis This argument provides the FEM basis (class basisfd), and may be in the form
of an FEM basis object, an FEM function object (class fd), or an FEM functional
parameter object (class fdPar.

K1 The stiffness matrix associated with the triangulation. It is computed using func-
tion .

lambda A non-negative real number controlling the smoothness of the surface by a
roughness penalty consisting of lambda multiplying the stiffness matrix K1.

Details

A probability density surface of a two-dimensional region bounded by line segments is defined by a
set of linear or planar triangular surfaces. Each triangular segment is associated with three vertices,
and with with three basis functions, each associated with a local linear surface that has height one
at one of the vertices and height zero along the two opposing edges. The basis function expansion
is actually of the logarithm of the density surface, and has one set of two partial derivatives ev-
erywhere except along edges and at vertices of the triangles. The surface is continuous over edges
and vertices. The density surface is computed by dividing the exponential of the log surface by the
integral of the density over the region, which is returned along with the coefficients of the expan-
sion within a list object. Multiple density surfaces may be estimated, in which case each column of
argument cvec is associated with a surface.

Value

F The penalized log likelihood value associated with the coefficient vector(s).

grad The gradient vector(s) associated with the coefficient vector(s).

norm The L2 norm(s) of the gradient vector(s).

Pvec A matrix, each column of which contains density function values at the nodes
or vertices.

Pden A vector of values of the normalizing constants defined for each surface defined
by integrating the exponential of a log surface over the triangular region.

Author(s)

Jim Ramsay

References

Sangalli, Laura M., Ramsay, James O., Ramsay, Timothy O. (2013), Spatial spline regression mod-
els, Journal of the Royal Statistical Society, Series B, 75, 681-703.

See Also

basisfd, smooth.FEM.density

10 FEMdensity

Examples

--------- density on right triangle --------------
Define the locations of the vertices of the right triangle
pts <- matrix(c(0,0, 1,0, 0,1), 3, 2, byrow=TRUE)
npts <- dim(pts)[1]
Specify the single triangle defined by these vertices.
The vertices are listed in counter-clockwise order
tri <- matrix(c(1,2,3),1,3)
ntri <- dim(tri)[1]
Set up the FEM basis object for this region
edg <- NULL
RtTriBasis <- create.FEM.basis(pts, edg, tri, 1)
List object containing details of nodes.
nodeList <- makenodes(pts,tri,1)
number of random points required
Nsample <- 100
generate random points ... define the function
obspts <- randomFEMpts(Nsample, pts, tri)
Define a starting value for the coefficient vector of length 3
cvec0 <- matrix(rnorm(npts),npts,1)
Evaluate the function and gradient vector
result <- FEMdensity(cvec0, obspts, RtTriBasis)
print(paste("Function value =",result$F))
print("gradient:")
print(result$grad)
---------- density on a unit square, 4 triangles, 5 nodes ----------
Generate a unit square with a node in its center defining four
triangles and five nodes.
result <- squareMesh(1)
pts <- result$p
edg <- result$e
tri <- result$t
plot the mesh
plotFEM.mesh(pts, tri)
npts <- dim(pts)[1]
ntri <- dim(tri)[1]
Define the true log density function
SinCosIntensFn <- function(x,y) {

return(sin(2*pi*x)*cos(2*pi*y))
}
Compute a sine*cosine intensity surface.
intDensityVec <- triDensity(pts, tri, SinCosIntensFn)
Set up and plot an FEM basis object
SquareBasis1 <- create.FEM.basis(pts, edg, tri)
N <- 100
obspts <- randomFEMpts(N, pts, tri, intDensityVec)
plot the random points
points(obspts[,1],obspts[,2])
Estimate the smooth density surface with light smoothing
order <- 1
nodeList <- makenodes(pts,tri,order)
K1 <- stiff.FEM(SquareBasis1)

insideIndex 11

lambda <- 1e-4
define a random coefficient vector
cvec <- rnorm(npts,1)
display function value and gradient
result <- FEMdensity(cvec, obspts, SquareBasis1, K1, lambda)
print(paste("Function value =",round(result$F,3)))
print("gradient:")
print(round(result$grad,3))

insideIndex Index of the triangle containing a point.

Description

Evaluate the index of the triangle containing the point (X,Y) if such a triangle exists, and NaN
otherwise.

Usage

insideIndex(obspts, pts, tri, tricoef)

Arguments

obspts A two-column matrix of observation location points.

pts A two-column matrix of the locations of the vertices of the mesh.

tri A three-column matrix of the indices in pts of the triangle vertices.

tricoef Four-column matrix of coefficients for computing barycentric coordinates.

Details

Each triangle is checked to see if the point is contained within it or on its boundary. This is verified
if all three of the barycentric coordinates are non-negative.

Value

A vector of integers indicating which triangle in tri contains a point.

See Also

FEMdensity, eval.FEM.basis

12 makenodes

Examples

---------- density on a unit square, 4 triangles, 5 vertices ----------
Generate a unit square with a node in its center defining four
triangles and five nodes.
result <- squareMesh(1)
pts <- result$p
edg <- result$e
tri <- result$t
npts <- dim(pts)[1]
ntri <- dim(tri)[1]
define function for sine*cosine function
SinCosIntensFn <- function(x,y) {

return(sin(2*pi*x)*cos(2*pi*y))
}
Compute a sine*cosine intensity surface.
intDensityVec <- triDensity(pts, tri, SinCosIntensFn)
Set up and plot an FEM basis object
SquareBasis1 <- create.FEM.basis(pts, edg, tri)
oldpar <- par(cex.lab=2)
plotFEM.mesh(pts, tri)
generate random points
N = 1000
obspts <- randomFEMpts(N, pts, tri, intDensityVec)
plot the random points
points(obspts[,1],obspts[,2])
find the triangle number containing each point
triIndex <- insideIndex(obspts, pts, tri)
par(oldpar)

makenodes Compute the matrix nodes containing all the nodes in the mesh.

Description

Each basis function is associated with a node. If the order of the finite elements is 1, the nodes are
the vertices of the triangles. If the order is 2, the nodes are also at the midpoints of the edges.

Usage

makenodes(pts, tri, order=2)

Arguments

pts A two-column matrix of the locations of the vertices of the mesh.

tri A three-column matrix of the indices in pts of the triangle vertices.

order The order of the finite element, which is either 1 or 2.

mass.FEM 13

Details

Computes a matrix nodes containing coordinates for all of the nodes to be used, a matrix nodeindex
defining which nodes correspond to each element. If norder is 1, nodes corresponds to vertices
and nodeindex is identical to triangles. If norder is 2, the midpoint of each edge is computed and
added to points to obtain matrix nodes. The row index of that midpoint is then added to the rows of
triangles containing that edge to define nodeindex.

Value

A list object containing these members:

• order The order of the finite elements, which is either 1 or 2.
• nodes A numnodes*2 matrix whose i’th row contains the coordinates of the i’th nodal variable.

Nodes for the second order element consist of vertices and midpoints of edges, that is, 6 per
triangle. Points are listed first followed by midpoints. Nodes for the first order element consist
of only vertices.

• nodeindex If norder == 1, nodeindex is triangles. If norder == 2, an nele*6 matrix whose i’th
row contains the row numbers (in nodes) of the nodal variables defining the i’th finite element.
If the i’th row of FMESH is [V1 V2 V3] then the i’th row of nodeindex is [V1 V(12) V2 V(23)
V3 V(31)], where Vi is the row number of the i’th point and V(ij) is the row number of the
midpoint of the edge defined by the i’th and j’th points. If norder == 1, nodeindex is triangles

• jvec Jacobian, which is the area of triangle.
• metric Metric matrix.

See Also

mass.FEM, stiff.FEM

mass.FEM Compute the mass matrix for a finite element basis.

Description

mass.FEM produces the mass matrix containing integrals of products of the nodal functions.

Usage

mass.FEM(FEMbasis)

Arguments

FEMbasis A List object produced by function create.FEM.basis. It contains:
• orderThe order of the element (1 or 2).
• nodesCoordinates of node points.
• nodeindexIndices of node points for each element.
• jvecJacobian of the affine transformation of each element to the master el-

ement.

14 MeuseData

Value

A matrix k0: the nnod by nnod matrix of sums of products of nodal basis functions. For each
element i, the integral of the product of the j’th and k’th shape functions over the i’th element is
computed. Then that value is the (nodeindex[i,j],nodeindex[i,k]) entry of the i’th elemental
mass matrix.

Author(s)

Jim Ramsay

References

Sangalli, Laura M., Ramsay, James O., Ramsay, Timothy O. (2013), Spatial spline regression mod-
els, Journal of the Royal Statistical Society, Series B, 75, 681-703.

See Also

stiff.FEM

MeuseData Objects Defining Meuse River Mesh

Description

The data are the points, edges and triangles required to mesh a bank of the Meuse river in Belgium
that is of concern for heavy metal polution. The data to be analyzed are locations and size of zinc
assays. A covariate is distances of locations from the river.

Usage

MeuseData

Format

A named list.

Details

A named list with four members. The number of points is 155, the number of edges is 52, and the
number of triangles is 257.

covdata: A 155 by 2 matrix. The first column contains the distance from the river of each location,
and the second the amount of zinc detected.

pts: A 155 by 2 matrix containing the locations of the deposits.
edg: A 52 by 2 matrix containing the indices of the points that are the beginning and end of each

of the 52 boundary segments.
tri: A 257 by 3 matrix containing the indices of the vertices of each triangle in counter-clockwise

order.

plotFEM.fd 15

plotFEM.fd Plots an FEM functional data object.

Description

Plots a FEM object fdobj over a rectangular grid defined by vectors Xgrid and Ygrid.

Usage

plotFEM.fd(fdobj, Xgrid=NULL, Ygrid=NULL, nderivs=rep(0,2),
xlab="X", ylab="Y", zlab="Z", main="",
ticktype="detailed", r=10, phi=15, theta=30)

Arguments

fdobj A surface defined by a finite element FEM basis.

Xgrid A vector of X coordinate values.

Ygrid A vector of Y coordinate values.

nderivs A vector of length 2 indicating order of partial derivatives.

xlab A character vector for labelling the X-axis when using function persp.

ylab A character vector for labelling the Y-axis when using function persp.

zlab A character vector for labelling the Z-axis when using function persp.

main A character vector for the title when using function persp.

ticktype A character vector for defining the tick marks when using function persp.

r A positive number for the distance of the eyepoint from the center of the plot
when using function persp.

phi A number specifying the collatitude when using function persp.

theta A number specifying the azimuthal direction when using function persp.

Value

No return value, called for side effects.

See Also

plotFEM.mesh, eval.FEM.fd

Examples

Set up and plot a square with side length one with 32 interior triangles,
and then create an order one functional basis object of type FEM.
m <- 4
petList <- squareMesh(m)
pts <- petList$p
edg <- petList$e

16 plotFEM.mesh

tri <- petList$t
pts <- pts/m
plotFEM.mesh(pts, tri)
norder <- 1
FEMbasis <- create.FEM.basis(pts, edg, tri, norder)
set up surface values on the nodes of this mesh
data <- sin(2*pi*pts[,1])*cos(2*pi*pts[,2])
smooth the data
FEMList <- smooth.FEM.basis(pts, data, FEMbasis)
sincosfd <- FEMList$fd
set up a 21 by 21 grid of plotting points
Npts <- 21
Xpts <- seq(0,1,len=Npts)
Ypts <- Xpts
plot the surface
oldpar <- par(no.readonly = TRUE)
plotFEM.fd(sincosfd, Xpts, Ypts)
plot the X partial derivative of the surface
plotFEM.fd(sincosfd, Xpts, Ypts, c(1,0))
plot the Y partial derivative of the surface
plotFEM.fd(sincosfd, Xpts, Ypts, c(0,1))
par(oldpar)

plotFEM.mesh Plot a finite element mesh.

Description

A finite element mesh is a set of triangles defining a two-dimensional region.

Usage

plotFEM.mesh(pts, tri, xlabel="x", ylabel="y", xlim=plim1, ylim=plim2,
shift=0.05, nonum=TRUE)

Arguments

pts A two-column matrix of the locations of the vertices of the mesh.

tri A three-column matrix of the indices in pts of the triangle vertices.

xlabel A character string for the label of the abscissa or horizontal axis.

ylabel A character string for the label of the ordinate or vertical axis.

xlim A vector of length 2 containing the left and right plotting limits, respectively.

ylim A vector of length 2 containing the bottom and plot plotting limits, respectively.

shift A lateral character shift for text plotting.

nonum A logical constant. If FALSE, numbers for nodes and triangles will not be dis-
played.

randomFEMpts 17

Value

The nodes and mesh lines are plotted. The number of each node and triangle is plotted, with node
numbers in black and triangle number in blue.

See Also

plotFEM.fd

Examples

Set up and plot a square with side length one with 32 interior triangles,
and then create an order one functional basis object of type FEM.
m <- 4
petList <- squareMesh(m)
pts <- petList$p
edg <- petList$e
tri <- petList$t
pts <- pts/m
plotFEM.mesh(pts, tri)

randomFEMpts Generate Random Locations in a Mesh with a Specified Density

Description

The probability that a random location is assigned to a triangle is defined by an input vector of
probabilities, one per triangle. But if DensityVec = 1, any location within the mesh is accepted.

Usage

randomFEMpts(Nsample, pts, tri, logDensityVec=rep(0,ntri))

Arguments

Nsample The number of random locations to be generated.

pts A two-column matrix of locations of nodes.

tri A three-column matrix of integers specifying the vertices of triangles in anti-
clockwise order.

logDensityVec A one-column matrix of log probability density values, one for each triangle.

Details

Within triangles, the locations are uniformly distributed. If DensityVec = 1, they are uniformly
distributed over the whole mesh.

Value

A two-column matrix with N rows specifying the locations of the random points.

18 randomFEMpts

Author(s)

Jim Ramsay

References

Sangalli, Laura M., Ramsay, James O., Ramsay, Timothy O. (2013), Spatial spline regression mod-
els, Journal of the Royal Statistical Society, Series B, 75, 681-703.

See Also

link{plotFEM.mesh}

Examples

--------- density on right triangle --------------
Define the locations of the vertices of the right triangle
pts <- matrix(c(0,0, 1,0, 0,1), 3, 2, byrow=TRUE)
npts <- dim(pts)[1]
Specify the single triangle defined by these vertices.
The vertices are listed in counter-clockwise order
tri <- matrix(c(1,2,3),1,3)
ntri <- dim(tri)[1]
Set up the FEM basis object for this region
edg <- NULL
RtTriBasis <- create.FEM.basis(pts, edg, tri, 1)
List object containing details of nodes.
nodeList <- makenodes(pts,tri,1)
number of random points required
Nsample <- 100
generate random points ... define the function
obspts <- randomFEMpts(Nsample, pts, tri)
plot the random points
plotFEM.mesh(pts, tri)
points(obspts[,1],obspts[,2])
----------------- density on a circle ---------------
angle = seq(0,11*pi/6,len=12)
define the 24 point locations
rad = 2
ctr = c(0,0)
pts = matrix(0,25,2);
pts[1:12,1] = rad*cos(angle) + ctr[1]
pts[1:12,2] = rad*sin(angle) + ctr[2]
pts[13:24,1] = rad*cos(angle)/2 + ctr[1]
pts[13:24,2] = rad*sin(angle)/2 + ctr[2]
define the edge indices
edg <- matrix(0,12,2)
for (i in 1:11) {

edg[i,1] <- i
edg[i,2] <- i+1

}
edg[12,] <- c(12,1)
use delaunay triangulation to define the triangles

smooth.FEM.basis 19

tri = delaunayn(pts)
plot the triangulation of the circle
plotFEM.mesh(pts, tri, xlim=c(-2,2), ylim=c(-2,2))
Define the true log density function
SinCosIntensFn <- function(x,y) {

return(sin(pi*x/2)*cos(pi*y/2))
}
locate observation points with sin*cos log density
intDensityVec <- triDensity(pts, tri, SinCosIntensFn)
number of random points required
Nsample <- 100
generate random points ... define the function
obspts <- randomFEMpts(Nsample, pts, tri, intDensityVec)
points(obspts[,1], obspts[,2], pch="o")

smooth.FEM.basis Construct a functional data object by smoothing spatial data dis-
tributed over a region with a complicated boundary using a roughness
penalty.

Description

Discrete observations of a surface are fit with a smooth surface defined by an expansion in a set of
FEM type basis functions. The fitting criterion is weighted least squares, and smoothness can be
defined in terms of a roughness penalty.

Data smoothing requires at a bare minimum three elements: (1) a set of observed noisy values, (b)
a set of argument values associated with these data, and (c) a basis function system used to define
the surfaces.

Optionally, a set covariates may be also used to take account of various non-smooth contributions to
the data. Smoothing without covariates is often called nonparametric regression, and with covariates
is termed semiparametric regression.

Usage

smooth.FEM.basis(FEMloc, FEMdata, FEMbasis, lambda=1e-12, wtvec=NULL,
covariates=NULL, Laplace=NULL)

Arguments

FEMloc A matrix with two columns containing the coordinates of the points where the
data are observed.

FEMdata If a single surface, column vector containing the values to be smoothed. Other-
wise, a matrix of observation values that is number of pts by number of surfaces.

FEMbasis Either (1) a functional basis object of the FEM type if the first argument contains
the X-coordinates, or, if the first argument is a matrix with three columns, an N
by q matrix of covariate values, where N is the number of observations and q is
the number of covariates.

20 smooth.FEM.basis

lambda Either (1) a nonnegative smoothing parameter value that controls the amount
of penalty on the curvature of the fitted surface, or (2) a vector of weights for
the observations. The default value for lambda is 1e-12, a value too small to
noticeably affect the curvature of the fitted surface, but large enough to ensure
nonsingularity in the equations defining the coefficients of the basis function
expansion.

wtvec a vector of length N that is the length of Xvec containing weights for the values
to be smoothed, However, it may also be a symmetric matrix of order n. wt
defaults to all weights equal to 1.

covariates An N by q matrix of covariate values, one for each covariate and each observed
value. By default this argument is NULL and no covariates are used to define
the surface.

Laplace If TRUE, the Laplacian surface is computed, otherwise not.

Details

The surface fitted to the data by smooth.FEM.basis is an expansion in terms of finite element
basis functions defined by a triangular mesh of points defining the region over which the smooth
is defined. The mesh also determines the location and shape of the basis functions. The mesh
therefore plays a role that is like that of knots for B-spline basis functions, but is perhaps even more
critical to the success of the smoothing process.

Designing and refining the mesh is therefore a preliminary step in finite element smoothing, and
requires considerable care and effort. Consult the help pages for MESH and create.FEM.basis for
more details.

A roughness penalty is a quantitative measure of the roughness of a surface that is designed to fit the
data. For this function, this penalty consists of the product of two parts. The first is an approximate
integral over the argument range of the square of a derivative of the surface. A typical choice of
derivative order is 2, whose square is often called the local curvature of the function. Since a rough
function has high curvature over most of the function’s range, the integrated square of of the second
derivative quantifies the total curvature of the function, and hence its roughness. The second factor
is a positive constant called the bandwidth of smoothing parameter, and given the variable name
lambda here.

The roughness penalty is added to the weighted error sum of squares and the composite is mini-
mized, usually in conjunction with a high dimensional basis expansion such as a spline function de-
fined by placing a knot at every observation point. Consequently, the smoothing parameter controls
the relative emphasis placed on fitting the data versus smoothness; when large, the fitted surface is
more smooth, but the data fit worse, and when small, the fitted surface is more rough, but the data
fit much better. Typically smoothing parameter lambda is manipulated on a logarithmic scale by,
for example, defining it as a power of 10.

A good compromise lambda value can be difficult to define, and minimizing the generalized cross-
validation or "gcv" criterion that is output by smooth.FEM.basis is a popular strategy for making
this choice, although by no means foolproof. One may also explore lambda values for a few log
units up and down from this minimizing value to see what the smoothing function and its derivatives
look like. The function plotfit.fd was designed for this purpose.

The size of common logarithm of the minimizing value of lambda can vary widely, and spline func-
tions depends critically on the typical spacing between knots. While there is typically a "natural"

smooth.FEM.basis 21

measurement scale for the argument, such as time in milliseconds, seconds, and so forth, it is better
from a computational perspective to choose an argument scaling that gives knot spacings not too
different from one.

Value

an object of class fdSmooth, which is a named list of length 8 with the following components:

fd an FEM functional data object containing a smooth of the data

df a degrees of freedom measure of the smooth

gcv the value of the generalized cross-validation or GCV criterion. If there are mul-
tiple surfaces, this is a vector of values, one per surface. If the smooth is mul-
tivariate, the result is a matrix of gcv values, with columns corresponding to
variables.

gcv = n ∗ SSE/((n− df)2)

beta the regression coefficients associated with covariate variables. These are vector,
matrix or array objects depending on whether there is a single surface, multiple
surfaces or multiple surfaces and variables, respectively.

SSE the error sums of squares. SSE is a vector or a matrix of the same size as GCV.

penmat the penalty matrix

Author(s)

Jim Ramsay

References

Sangalli, Laura M., Ramsay, James O., Ramsay, Timothy O. (2013), Spatial spline regression mod-
els, Journal of the Royal Statistical Society, Series B, 75, 681-703.

See Also

create.FEM.basis, lambda2df, lambda2gcv, df2lambda, plotFEM.fd, plotFEM.mesh, smooth.FEM.basis

Examples

--
Example 1: smoothing data over a circular region
--
Set up a FEM object with a approximatedly circular boundary with 12 sides,
and two rings of 12 points plus a point at the centre.
angle = seq(0,11*pi/6,len=12)
define the 24 point locations
rad = 2
ctr = c(0,0)
pts = matrix(0,25,2)
pts[1:12,1] = rad*cos(angle) + ctr[1]
pts[1:12,2] = rad*sin(angle) + ctr[2]

22 smooth.FEM.density

pts[13:24,1] = rad*cos(angle)/2 + ctr[1]
pts[13:24,2] = rad*sin(angle)/2 + ctr[2]
npts = nrow(pts)
define the edge indices
edg <- matrix(0,12,2)
for (i in 1:11) {

edg[i,1] <- i
edg[i,2] <- i+1

}
edg[12,] <- c(12,1)
use delaunay triangulation to define the triangles
These geometry and RTriangle packages give different but legitimate answers
tri_GM <- geometry::delaunayn(pts)
plotFEM.mesh(pts, tri_GM, nonum=FALSE, shift = 0.1)
FEMbasis_GM <- create.FEM.basis(pts, edg, tri_GM, 1)
ntri <- nrow(tri_GM)
plot the two meshes
plotFEM.mesh(pts, tri_GM, nonum=FALSE, shift = 0.1)
title("A 25-point circular mesh from geometry")
set up the FEM basis objects
FEMbasis_GM <- create.FEM.basis(pts, edg, tri_GM, 1)
locations of locations and data (kept same for both triangulations)
nobs <- 201
FEMloc <- randomFEMpts(nobs, pts, tri_GM)
heights of a hemisphere at these locations (kept same for both triangulations)
sig <- 0.2
FEMdata <- sqrt(4 - FEMloc[,1]^2 - FEMloc[,2]^2) +

matrix(rnorm(nobs),nobs,1)*sig
Smooth the data
FEMList_GM <- smooth.FEM.basis(FEMloc, FEMdata, FEMbasis_GM, lambda=1)
FEMfd_GM <- FEMList_GM$fd
round(FEMList_GM$SSE,3)
round(FEMList_GM$df,3)
Xgrid = seq(-2,2,len=21)
Ygrid = seq(-2,2,len=21)
plot the result
plotFEM.fd(FEMfd_GM, Xgrid, Ygrid,

main="A hemisphere over a 25-point circle")

smooth.FEM.density Compute a smooth FEM density surface of a triangulated region.

Description

A spatial density defined over a region with complicated a boundary that is defined by a triangulation
is estimated. The basis functions are linear finite elements (FEM) defined at each vertex. The data
are the spatial coordinates of a sample of a defined spatial event. The density surface is the logarithm
of the density, and the smoothness of the log surface is controlled by a smoothing parameter lambda
multiplying the stiffness matrix.

smooth.FEM.density 23

Usage

smooth.FEM.density(obspts, cvec, FEMbasis, K1=NULL, lambda=0,
conv=1e-4, iterlim=50, dbglev=FALSE)

Arguments

obspts A two-column matrix with each row corresponding to a location within a two-
dimensional region bounded by line segments and containing a triangular mesh.

cvec A matrix each column of which contains the coefficients for an FEM basis func-
tion expansion of a surface. The number of coefficients equals the number of
vertices in the triangulation, also called the nodes of the FEM expansion.

FEMbasis This argument provides the FEM basis (class basisfd), and may be in the form
of an FEM basis object, an FEM function object (class fd), or an FEM functional
parameter object (class fdPar.

K1 The stiffness matrix associated with the triangulation. It is computed using func-
tion stiff.FEM.

lambda A non-negative real number controlling the smoothness of the surface by a
roughness penalty consisting of lambda.

conv The convergence criterion using the function value.

iterlim The maximum number of permitted iterations.

dbglev print debugging output.

Details

The penalized log likelihood of a density surface is minimized with respect to the coefficient vector.
with the initial value in cvec. The spatial event locations are in the two-column matrix pts. The
FEM basis object is extracted from IntensityfdPar, which may also be an FEM functional data
object or an FEM basis object. The roughness penalty, if required, is the stiff matrix K1 multiplied
by the roughness parameter lambda.

Value

cvec: The final coefficient vector or matrix.

Intensityfd: An FEM functional data object for the log density.

Flist: A list object with F the final penalized log likelihood value, grad the final gra-
dient and norm the final norm of the gradient.

iterhist: A matrix with three columns displaying the iteration number, the function value
and the norm of the gradient vector for the initial iteration and each subsequent
iteration.

Author(s)

Jim Ramsay

24 smooth.FEM.density

References

Sangalli, Laura M., Ramsay, James O., Ramsay, Timothy O. (2013), Spatial spline regression mod-
els, Journal of the Royal Statistical Society, Series B, 75, 681-703.

See Also

link{FEMdensity}

Examples

--------- Density on right triangle --------------

Define the locations of the vertices of the right triangle
pts <- matrix(c(0,0, 1,0, 0,1), 3, 2, byrow=TRUE)
npts <- dim(pts)[1]
Specify the single triangle defined by these vertices.
The vertices are listed in counter-clockwise order
tri <- matrix(c(1,2,3),1,3)
ntri <- dim(tri)[1]
Set up the FEM basis object for this region
RtTriBasis <- create.FEM.basis(pts, NULL, tri, 1)
plotFEM.mesh(pts, tri, RtTriBasis)
List object containing details of nodes.
nodeList <- makenodes(pts,tri,1)
K1 <- stiff.FEM(RtTriBasis)
Define the true log density, which is flat with height 0
ZeroFn <- function(x,y) {

xdim <- dim(x)
ZeroIntens <- matrix(0,xdim[1],xdim[1])
return(ZeroIntens)

}
Compute of probabilities for each triangle of having a
location withinx it.
intDensityVec <- triDensity(pts, tri, ZeroFn)
number of random points required
N <- 100
generate random points ... define the function
obspts <- randomFEMpts(N, pts, tri, intDensityVec)
plot the random points
points(obspts[,1],obspts[,2])
Define a starting value for the coefficient vector of length 3
cvec <- matrix(0,npts,1)
Estimate the smooth density surface with no smoothing
densityList <- smooth.FEM.density(obspts, cvec, RtTriBasis, dbglev=2, iterlim=10)
The estimate of the coefficient vector
cvec <- densityList$cvec
Define the log density FEM functional data object
lnlamfd <- fd(cvec, RtTriBasis)
Plot the log density surface
Xgrid <- seq(0,1,len=51)
Ygrid <- Xgrid
plotFEM.fd(lnlamfd, Xgrid, Ygrid)

smooth.FEM.density 25

Plot the log density surface
plotFEM.fd(lnlamfd, Xgrid, Ygrid)
Plot the log density surface using function contour
logdensitymat <- matrix(0,51,51)
for (i in 1:51) {

for (j in 1:51) {
logdensitymat[i,j] <- eval.FEM.fd(matrix(c(Xgrid[i],Ygrid[j]),1,2),lnlamfd)

}
}
contour(Xgrid, Ygrid, logdensitymat)
Plot the density surface using function contour
densitymat <- matrix(0,51,51)
for (i in 1:51) {

for (j in 1:51) {
densitymat[i,j] <- exp(eval.FEM.fd(matrix(c(Xgrid[i],Ygrid[j]),1,2),lnlamfd))

}
}
contour(Xgrid, Ygrid, densitymat)

---------- density on a unit square, 4 triangles, 5 vertices ----------

Generate a unit square with a node in its center defining four
triangles and five nodes.
result <- squareMesh(1)
pts <- result$p
edg <- result$e
tri <- result$t
npts <- dim(pts)[1]
ntri <- dim(tri)[1]
Compute a sine*cosine intensity surface.
SinCosIntensFn <- function(x,y) {

return(sin(2*pi*x)*cos(2*pi*y))
}
logDensityVec <- triDensity(pts, tri, SinCosIntensFn)
Set up and plot an FEM basis object
par(cex.lab=2)
SquareBasis1 <- create.FEM.basis(pts, edg, tri)
plotFEM.mesh(pts, tri)
generate random points
N = 100
obspts <- randomFEMpts(N, pts, tri, logDensityVec)
plot the random points
points(obspts[,1],obspts[,2])
Estimate the smooth density surface with light smoothing
order <- 1
nodeList <- makenodes(pts,tri,order)
K1 <- stiff.FEM(SquareBasis1)
lambda <- 1e-4
define a random coefficient vector
cvec <- matrix(0,npts,1)
Estimate the smooth density surface with no smoothing
densityList <- smooth.FEM.density(obspts, cvec, SquareBasis1, dbglev=2, iterlim=10)
The estimate of the coefficient vector

26 squareMesh

cvec <- densityList$cvec
Define the log density FEM functional data object
lnlamfd <- fd(cvec, SquareBasis1)
Plot the log density surface
Xgrid <- seq(0,1,len=51)
Ygrid <- Xgrid
plotFEM.fd(lnlamfd, Xgrid, Ygrid)
Plot the log density surface
plotFEM.fd(lnlamfd, Xgrid, Ygrid)
Plot the log density surface using function contour
logdensitymat <- matrix(0,51,51)
for (i in 1:51) {

for (j in 1:51) {
logdensitymat[i,j] <- eval.FEM.fd(matrix(c(Xgrid[i],Ygrid[j]),1,2),lnlamfd)

}
}
contour(Xgrid, Ygrid, logdensitymat)
Plot the density surface using function contour
densitymat <- matrix(0,51,51)
for (i in 1:51) {

for (j in 1:51) {
densitymat[i,j] <- exp(eval.FEM.fd(matrix(c(Xgrid[i],Ygrid[j]),1,2),lnlamfd))

}
}
contour(Xgrid, Ygrid, densitymat)

squareMesh Generate a Triangulation of a Square.

Description

The square is subdivided into m internal squares. Within each internal square nodes are set at the
corners and the middle. Each square is thus subdivided into four triangles.

Usage

squareMesh(m=1)

Arguments

m The number of squares within the outer square.

Details

The outer square has sides of length m. If another length $x > 0$ of the side is required, this can
easily be achieved by the command p = p*x/m.

squareMesh_RL 27

Value

A named list containing locations of nodes and which nodes define the edge segments and the
triangles. The members are:

• p: A two-column matrix specifying the nodes of the mesh.

• e: A two-column matrix of integers specifying which nodes define each edge segment.

• t: A three-column matrix of integers specifying which nodes define each triangle in anti-
clockwise order.

Author(s)

Jim Ramsay

References

Sangalli, Laura M., Ramsay, James O., Ramsay, Timothy O. (2013), Spatial spline regression mod-
els, Journal of the Royal Statistical Society, Series B, 75, 681-703.

See Also

link{plotFEM.mesh}

Examples

m <- 3
A square of size 3 with 9 internal squares,
25 nodes, 12 edge segments and 36 triangles.
result = squareMesh(m)
pts = result$pts
edg = result$edg
tri = result$tri
plot the mesh
plotFEM.mesh(pts,tri)

squareMesh_RL Generate a Triangulation of a Square.

Description

The square is subdivided into m internal squares. Within each internal square, nodes are set at the
corners. Each square is subdivided into two triangles by a line either going from lower left to upper
right if orientation="L", of by a line from lower right to upper left is orientation="R".

Usage

squareMesh_RL(m=1,orientation="L")

28 stiff.FEM

Arguments

m The number of squares within the outer square.

orientation The position of the lower corner of the diagonal line subdividing each square.
This must be either "L" or "R".

Details

The outer square has sides of length m. If another length $x > 0$ of the side is required, this can
easily be achieved by the command p = p*x/m.

Value

A named list containing locations of nodes and which nodes define the edge segments and the
triangles. The members are:

• p: A two-column matrix specifying the nodes of the mesh.

• e: A two-column matrix of integers specifying which nodes define each edge segment.

• t: A three-column matrix of integers specifying which nodes define each triangle in anti-
clockwise order.

Author(s)

Jim Ramsay

References

Sangalli, Laura M., Ramsay, James O., Ramsay, Timothy O. (2013), Spatial spline regression mod-
els, Journal of the Royal Statistical Society, Series B, 75, 681-703.

See Also

link{plotFEM.mesh}

stiff.FEM Compute the stiffness matrix for a finite element basis.

Description

stiff.FEM produces the stiffness matrix containing integrals of products of second partial derivatives
of the nodal functions.

Usage

stiff.FEM(FEMbasis)

tricoefCal 29

Arguments

FEMbasis A List object produced by function create.FEM.basis. It contains:

• orderThe order of the element (1 or 2).
• nodesCoordinates of node points.
• nodeindexIndices of node points for each element.
• jvecjacobian of the affine transformation of each element to the master ele-

ment.

Value

A matrix K0: the NNOD by NNOD matrix of sums of products of nodal basis functions. For each ele-
ment i, the integral of the product of the j’th and k’th second partial derivatives of the shape functions
over the i’th element is computed. Then that value is the (nodeindex[i,j],nodeindex[i,k])th
entry of the i’th elemental stiff matrix.

Author(s)

Jim Ramsay

References

Sangalli, Laura M., Ramsay, James O., Ramsay, Timothy O. (2013), Spatial spline regression mod-
els, Journal of the Royal Statistical Society, Series B, 75, 681-703.

See Also

mass.FEM

tricoefCal Compute the coefficient matrix required to test of a point is inside a
triangle.

Description

Compute the coefficient matrix tricoef required to test if a point is inside a triangle.

Usage

tricoefCal(pts, tri)

Arguments

pts A two-column matrix of the locations of the vertices of the mesh.

tri A three-column matrix of the indices in pts of the triangle vertices.

30 triDensity

Value

A matrix tricoef.

See Also

insideIndex

triDensity Compute the probabilities that a random location will be within one
of the triangles of an FEM mesh.

Description

Given a function defining a log-density surface for an FEM density, compute the probabilities that
a random location will be within each of the triangles of an FEM mesh. This involves numerical
quadrature over each rectangle, and nquad is the order of approximation.

Usage

triDensity(pts, tri, logIntensFn, nquad=5)

Arguments

pts A two-column matrix with each row corresponding to a location within a two-
dimensional region bounded by line segments and containing a triangular mesh.

tri A three-column matrix indexing for each triangle its vertices.

logIntensFn A function of x and y giving the surface height for an unnormalized log density
function. It must return a square matrix of order equal to nquad. This implies
that any multiplications must be pointwise.

nquad The order of the quadrature over a triangle. The default order of five is good for
most applications.

Value

A vector of length equal to the number of triangles in a mesh containing the probabilities that a
random observation will fall within the triangles.

Author(s)

Jim Ramsay

References

Sangalli, Laura M., Ramsay, James O., Ramsay, Timothy O. (2013), Spatial spline regression mod-
els, Journal of the Royal Statistical Society, Series B, 75, 681-703.

triquad 31

See Also

smooth.FEM.density

Examples

--------- right triangle mesh with zero log density --------------
Define the locations of the vertices of the right triangle
pts <- matrix(c(0,0, 1,0, 0,1), 3, 2, byrow=TRUE)
npts <- dim(pts)[1]
Specify the single triangle defined by these vertices.
The vertices are listed in counter-clockwise order
tri <- matrix(c(1,2,3),1,3)
ntri <- dim(tri)[1]
Set up the FEM basis object for this region
edg <- NULL
RtTriBasis <- create.FEM.basis(pts, edg, tri, 1)
set up function to provide log intensity zero
ZeroFn <- function(x,y) {

xdim <- dim(x)
ZeroIntens <- matrix(0,xdim[1],xdim[1])
return(ZeroIntens)

}
Define the true log density, which is flat with height 0
intDensityVec <- triDensity(pts, tri, ZeroFn)
--------- square mesh with sin*cos log density --------------
nsquare <- 3
result <- squareMesh(nsquare)
pts <- result$p
tri <- result$t
pts <- pts/nsquare
Set up and plot an FEM basis object
edge <- NULL
SquareBasis3 <- create.FEM.basis(pts, edg, tri)
plotFEM.mesh(pts, tri)
set up function to provide log intensity sine*cosine
SinCosIntensFn <- function(x,y) {

scale <- 1
SinCosIntens <- scale*sin(2*pi*x)*cos(2*pi*y)
return(SinCosIntens)

}
Computation of probabilities for each triangle of having a
location within it.
intDensityVec <- triDensity(pts, tri, SinCosIntensFn)
Display triangle numbers with probabilities
print(cbind(matrix(1:ntri,ntri,1), round(intDensityVec,3)))

triquad Set up Gaussian quadrature points and weights for a triangular do-
main.

32 triquad

Description

The integral of a function over a triangle is approximated by a weighted sum of the values of the
function at a set of points.

Usage

triquad(nquad, v)

Arguments

nquad The number of quadrature points and weights is N^2.

v A matrix with three rows and two columns containing the locations of the ver-
tices of the triangle.

Details

Gaussian quadrature approximates an integral of a function f over a triangle by a weighted sum
of N^2 values of f at specified points within the triangle. The larger N, the more accurate the
approximation, but course the longer it takes to compute. For many purposes, including most uses
of finite element methods, the accuracy does not have to be great, and N=5 may well suffice

Value

A list object containing these named fields:

X The X-coordinates of the quadrature points.

Y The Y-coordinates of the quadrature points.

Wx The weights for the X-coordinates of the quadrature points.

Wy The weights for the Y-coordinates of the quadrature points.

Author(s)

J. O. Ramsay

References

Sangalli, Laura M., Ramsay, James O., Ramsay, Timothy O. (2013), Spatial spline regression mod-
els, Journal of the Royal Statistical Society, Series B, 75, 681-703.

Index

∗ create
create.FEM.basis, 2

∗ datasets
MeuseData, 14

∗ insideIndex
insideIndex, 11

∗ makenodes
makenodes, 12

∗ mass.FEM
mass.FEM, 13

∗ plotFEM.fd
plotFEM.fd, 15

∗ smooth
eval.FEM.basis, 6

∗ stiff.FEM
stiff.FEM, 28

∗ tricoefCal
tricoefCal, 29

basisfd, 9

create.FEM.basis, 2, 21

df2lambda, 21

eval.FEM.basis, 6, 7, 11
eval.FEM.fd, 6, 7, 15

FEMdensity, 8, 11

insideIndex, 11, 30

lambda2df, 21
lambda2gcv, 21

makenodes, 12
mass.FEM, 13, 13, 29
MeuseData, 14

plotFEM.fd, 15, 17, 21
plotFEM.mesh, 5, 15, 16, 21

randomFEMpts, 17

smooth.FEM.basis, 5, 6, 19, 21
smooth.FEM.density, 9, 22, 31
squareMesh, 26
squareMesh_RL, 27
stiff.FEM, 13, 14, 28

tricoefCal, 29
triDensity, 30
triquad, 31

33

	create.FEM.basis
	eval.FEM.basis
	eval.FEM.fd
	FEMdensity
	insideIndex
	makenodes
	mass.FEM
	MeuseData
	plotFEM.fd
	plotFEM.mesh
	randomFEMpts
	smooth.FEM.basis
	smooth.FEM.density
	squareMesh
	squareMesh_RL
	stiff.FEM
	tricoefCal
	triDensity
	triquad
	Index

